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ABSTRACT

A mathematical model is developed for determining an optimum

submarine tender load list for the POLARIS (FBM) weapon system.

Military essentiality of spare parts and the stowage capacity of the

tender play prominent roles in the development of the model. The

measure of effectiveness which is maximized is the average number

of demands filled over a given period of time. This is equivalent to

minimizing the number of stockouts of an item. An example of the

use of the model is included for the case where the demand for

items is characterized by the normal distribution. The paper in-

cludes a computer flow chart and program to aid in implementing

the model.

The authors wish to express their appreciation for the

assistance and encouragement given them by Associate Professor

Julius H. Gandelman of the U. S. Naval Postgraduate School.

The authors are also indebted to Miss Patricia Hoang for her assis-

tance in programming the model on the CDC 1604 computer.
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GLOSSARY OF TERMS

i = a' given item where i = 1,2,3 N (the entire

list of spare parts is drawn up and then a number
is assigned to each spare part to identify it).

Zj = amount of item i to be stocked.

Xj = demand for the i item.

fi(xi)
= probability that an amount Xj will be demanded

during the period under consideration.

E^il = expected demand for item i ; = mj.

b(z^) = expected shortage of item i.

s(zj) = average number of i item supplied to meet demand.

A =; Lagragian multiplier.

c^ = cube (volume) of the i item.

C = total cube available for spare parts stowage on tender.

C = total cube associated with any A for which ^- C-CZ^^C.,

tVi

Mj = essentiality (military worth) number assigned to i

item.

<T£ = deviation of i item from the mean,

* *u - th •*mj = mean of the 1 item.

P = characteristic number associated with the i item.



1. Introduction.

The trend toward the development and utilization of highly com-

plex, sophisticated weapon systems within the Navy has generated

an ever- increasing requirement for more efficient logistical support.

This paper is an attempt to develop a mathematical model that can

be used as a decision aid for one aspect of the logistics problem

associated with the POLARIS system. The model provides a method

for determining the items and associated quantities that should be

stocked aboard the supporting tender.

The requirement for more effective tender load lists is even

more evident when viewed in conjunction with the POLARIS mobile

base concept.

In the event of enemy attack, the Navy's immediate POLARIS

retaliatory capability will have been dependent on the ability of the

supporting tender to provide the necessary SSB(N) replenishment

and repair requirements. This aspect of the tender function is fur-

ther complicated by the limitations of stowage space available for

stocking the required spare parts. As a result of this space

limitation, tender load lists must reflect SSB(N) requirements, and

tender re- supply procedures must be closely coordinated and

evaluated to insure that SSB(N) requirements are being met in an

effective and efficient manner.



The concept of military worth is incorporated in the model to

reflect the assignment of priorities between the various items.

These essentiality numbers are an attempt to define the military

worth of a particular item with reference to the performance of the

integrated weapon system. Essentiality factors will be assigned

arbitrarily; however, it should be apparent that actual MEC numbers

could have been utilized for illustrative purposes.

The measure of effectiveness to be maximized will be the average

number of demands for spare parts that are filled by the tender over

some period, as a function of the military essentiality of the various

items. This is equivalent to minimizing the number of stockouts

of an item.

It is obvious that if the demand for an item was known exactly,

the problem would be simplified considerably subject to the space

limitation of the tender. Although demand cannot be predicted with

certainty it may be possible to estimate the probability distribution

of demand for each item on the basis of past usage data. In the event

that usage data are not available, the model can be utilized by as-

suming a probability distribution of demand for the item(s), based

upon experience and judgment. This would be the situation encoun-

tered in developing an initial tender load list for a new class of

submarines. As usage data become available the tender load list



can be continually updated to reflect actual demand, utilizing

automatic data processing equipment. Appendix III contains a com-

puter flow diagram and program that will accomplish this objective.

Although this paper is primarily concerned with presenting a

method for determining an optimal tender load list, certain aspects

of the tender re- supply problem are included for consideration.



2. Assumptions

The following simplifying assumptions are introduced in order

to illustrate the proposed method.

1) The model is concerned with spare parts and does not

consider dry stores and other consumable items. As a result, C

refers to the cube available for spare parts stowage.

2) x^ is a continuous variable, and its associated probability

density function ^(x^) possesses the properties required for the

existence of derivatives and integrals.

3) The demand for each item is independent of the demand

for every other item.

4) The probability distribution of demand is known for each

item over the time period considered.

5) The list of items considered reflects only those for which

demand has been generated. If demand for an item stops , then the

item is removed from stock and a new load list is generated. Con-

versely, if demand for a new item is generated, it is added to the

load list and a revised Z = lzi z?. . • z-nt is determined by means

of the model.

6) The development of the model is independent of the re-

supply phase of the tender operation. The load list determined is a

function of demand over some period during which the tender must

provide support without being re- supplied. Theoretically the tender

4



is completely depleted of spare parts at the end of the period con-

sidered. The effect of re- supply as a function of the desired supply

objective will be considered in a later section.

7) The utility values defined in Appendix I are additive.



3. Presentation of the Model.

This section presents the essential concepts of the proposed

model. Appendix I contains a detailed mathematical formulation of

the results of this section.

The expectation, eL3> of x. with respect to the

probability function PL."3 gives the following expression for the

average amount of item i demanded:

(1) EDql = J°° *i fi (X
i ) dXi '

where x^= demand for the i"1 item.

(The limits of integration range from to CX> since only items

for which a demand is generated are considered)

Consider the following situations:

(a) x
i
<z

i ,

(b) x- > z
i

,

where z^ = amount of item i to be stocked.

If demand for an item is less than the amount of the item that

isstocked then the tender can meet demand. However, if demand

exceeds the stock level then only an amount z{ can be supplied. If

this condition occurs (x^ - z^) represents the shortage (backorder)

associated with that item. The expected shortage of an item can be

expressed as a function of the amount of the item stocked.

(x^ Zi) ^(xj) dx
t For x^ Zj ,

= otherwise



The expected value of the amount actually supplied to meet

demand is given as a function of the amount stocked on the tender.

This results in the following expression:

(3) Si [Zi3 =
J

*
X

*. f.(x.) dXi + B . $~ f^x^dxi

Manipulation of equations (1-3) confirms the intuitive concept

that the expected demand must equal the expected demands filled

plus the expected shortages.

H) ECxil = s^l + bi £zQ

As mentioned previously, the measure of effectiveness is a

function of the military essentiality of the item as well as the de-

mands filled by the tender. This requirement is met by defining

N
lA{z,,z7i . ,zn)= Sm. s i( zi)

in accordance with assumption (7).

The problem is now one of determining the set 2. =11 Z
t ,Z3t_ T

. -."Z.^

such that Hlz
(
,Zt...2^ = IE. ^C S^Cz.;.")

M
is maximized subject to the constraint 57 c- z- = C , Zi>0.

Equation (5)(below) is derived in Appendix I and is a general

result of the considerations mentioned in this section. This equation

provides the means for determining an optimum tender load list.

(5) J^fi
(x

i
)dx

i
=1-X(^L), i= 1, 2 N,

where A is a lagrangian multiplier with

values in the range rnin (
—~ ) ^ A ^ O

subject to: ^

Appendix I



4. General procedure for utilizing the model.

The general procedure for solving equation (5) is to assume a

corresponding to min (
-~

) , and compute the set Z

by using the appropriate cumulative distribution function table. The

C obtained (where C results from using a A other than that for

which SLc^z^^C) when the z^ are substituted into the constraint

equation ( SLc^z^- C ) determines the minimum required stowage

space aboard the tender as a function of demand over the demand period

associated with fj(x^). (As A increases, C" decreases. Since

min ( p~ ) is the largest permissible value of A » the corresponding

C is a minimum.) It should be noted that for any A. in the range

min
( /s:** )— A— O , every z- ^ 0. This automatically sets a mini-

mum stowage requirement on the tender of at least the sum of the

cube of each item.

Under the assumption that C is known for the tender, a com-

parison is made between this value and C If C > C 1 an iterative

solution is required to determine the A which results in C = C.

The corresponding z^'s obtained are the optimum load list.

If, on the other hand, C ^. C the model indicates that the ten-

der cannot effectively meet demands without re-supply during the

period under consideration. In the event this occurs several decision

criteria can be adopted. If demand for each item is relatively uni-

form, one solution would consist of decreasing the tender load list

8



time requirement. For example: Let C = 15,000 cu. ft. represent

a ninety-day load list minimum requirement. If C = 5,000 cu. ft. ,

then the tender can in effect maintain a 30 day load list by decreasing

each z^ proportionally.

This criterion has the advantage of maintaining a load list which

consists of all items that are demanded. The most obvious disadvan-

tage is the increased re- supply requirement.

Another possibility is the elimination of items from the load

list. This requires a decision criterion to select the item(s) which

should be deleted. Since C decreases as A increases.the model

M •

indicates that the item corresponding to min( —r-r ) should be the first

item removed from stock. If (C— c- a^ = C ; a. < z.) then an

amount (z- - a-) can be maintained for this item. If(C— CjZi>C)

then the item corresponding to min (
—« ) is eliminated completely.

A new min( -qt- ) is selected from the remaining list of N-l items

and the process is repeated. When a A can be found such that C=C'

the Zj*s have been determined for this decision criterion. This

particular policy insures that the items with the highest essentiality

M

"

2
to cube ratio (—— ) are retained on board.

That period during which the tender must be able to operate
without benefit of re- supply and still maintain effective support

capability.

^ Note that other policies could have been chosen. For example,
one might choose a policy that insures that items with high values of

P are retained on board, while items with low values of P are eliminated.



It permits tender support to be maintained at some reduced effective-

ness level. (This reduced level can be a significant one). In effect,

this is analogous to an unexpected demand situation and will be con-

sidered further in connection with tender re-supply requirements.

The iterative nature of the solution and the number of items

comprising load lists indicates the necessity for utilizing electronic

computers if the system is to be incorporated effectively. Appendix

HI contains a computer description and flow chart for the model.

10



5. Example and General Results:

A numerical example will serve to illustrate the procedure

for determining an optimal tender load list utilizing the proposed

model. Consider the case where the demand for each item is

characterized by the normal distribution. From equation (5)

subject to the available stowage constraint. It should be noted that

each item could have different demand distributions and the model

would still be valid. The only requirement for utilizing the model

is that the density functions be continuous.

Table (1) contains the parameter values pertinent to the

example. In accordance with the procedures of the previous section,

an available tender capacity of 10,152 is assumed. It should be

apparent that due to the iterative nature of the solution, «« C*iC

will be approximately equal to 10,152 for an optimum set Z.

(The most obvious reason is the need for rounding off the values

obtained to intergers. In order to insure that the space constraint

is met, the z-'s obtained should be rounded off to the lower interger

with the result that ^- CL ^"2-«- ~ C* ),

The values assigned to the items listed in Table (1) reflect

varying combinations of essentiality, cube, expected demand and

Another model could be developed which would utilize discrete
functions

.

11



standard deviation.

The essentiality valves in Table 1 were arbitrarily chosen to

show that items 1-8 are approximately four times as essential as

items 9-16. In a real life problem involving a large number of

items , a scheme using the military essentiality codes could be adapted

for use in this model.

Table 1

XT EQC3 <3l Ml *H "<=L Ml
i 100 12 9 12 .75 1.33.. 6.25

2 100 3 9 12 .75 1.33. . 25

3 50 12 9 12 .75 1.33. . 3. 12

4 50 3 9 12 .75 1.33. . 12.5

5 100 12 9 3 3 .333.. 25

6 100 3 9 3 3 o D -D O • • 100

7 50 12 9 3 3 .333.

.

12.5

8 50 3 9 3 3 .333.

.

50

9 100 12 2 12 .1666.. 6 1.38

10 100 3 2 12 .1666.. 6 5.55

11 50 12 2 12 .1666.. 6 0.6<)

12 50 3 2 12 . 1666. . 6 2.76

13 100 12 2 3 .666.. 1.5 5.55

14 100 3 2 3 .666.. 1.5 20

15 50 12 2 3 .666.. 1.5 2.76

16 50 3 2 3 .666.. 1.5 11. 1

In order to determine the value of M once an optimum set Z

is obtained, equation (3) must be utilized. For the case when

demand is characterized by the normal distribution,

12



Appendix II contains a detailed derivation of equation (3
1

.).

Since equation (5) requires z. ^> this implies that for the

case of the normal distribution equation (5) and (3
1

) are only valid

w>- 2
when -Hh^>3.87. (Fig. 1)

Fig. 1: Graph of the normal distribution function ©IX)

Since £bO'>0,iL(^~^)>0 =^ 2i=J^>-3.87.
<3T

wv:
# *. For "Z^> O , the ratio -=r=-> 3 87 must hold. Examination of

Table 1 indicates that this condition has been satisfied.

Due to the requirement above, the third term of equation (3
1

)

The value for-^- is dependent on the accuracy of the tables

used. The value of 3.87 was obtained from the Chemical Rubber

Company Standard Mathematical Tables.

13



can be ignored in this example since its contribution is insignificant

for the values assumed.

Table 2 is a presentation of the results obtained when the

parameters shown in Table 1 are used in the model. The optimal

set "Z.^ -\\ ~Z.^ T.2.., •••7.\
fe II which most nearly satisfies the arbitrary

constraint of 10,152 cu. ft. tender capacity was found by using A = .0^\6,

Note that items 9-12 generally lag in percent of expected average

demand filled ^(.Z^yelGO, f° r each value of A . This is intuitively

appealing because these are items with low military essentiality and

high cube. The items with high essentiality and low cube (5-8) are

stocked at consistently high levels.

Figures 2a thru 2d are plots of percent of expected average

number of demands filled, versus a characteristic number P, defined

Since each item is characterized by the parameters m, T", M and c,

each item is also characterized by P. Note that for different values

of C the curve shifts somewhat but retains the same general shape.

In each case as the characteristic number increases, the percent of

expected average number of demands filled increases.

The effect of variability of demand for this example is investi-

gated in Figure 3 by observing the behavior of items 9-12. Since

items 9 and 10 (also 11 and 12) differ only in their values of

we would expect any differences in their optimal stock levels ("2LC )

14



Table 2

Slcl^c = 808& S.tA^sfctcV <^in
X= • \zso

X 2-L %(3&l *%a c;Zw V\; sfeCl ^L ^lO ^VeCQ RiXt lACsfel)

1 109.2 98.46 98.46 1310.4 886. 14 111.6 98.94 98.94 1339.2 890.46

2 102.3 99.61 99.61 1227.6 896.49 102.9 99.73 99.73 1234.8 897.57

3 59. 2 48.46 96.92 710.4 436. 14 61. 6 48.94 97.88 739. 2 440.46

4 52.3 49.61 99.22 627.6 446.49 52.9 49. 73 99.46 634.8 447.57

5 119. 1 99.71 99.71 357.3 897.39 120.8 99.79 99.79 362.4 898. 11

6 104.8 99.92 99.92 314.4 899.28 105.2 99.94 99.94 315.6 899.46

7 69. 1 49.71 99.42 207.3 447.39 70.8 49.79 99.58 212.4 448. 11

8 54.8 49.92 99.84 164.4 449.28 55.2 49 . 94 97.88 165.6 449.46

9 53.6 53.55 53.55 643.2 107. 10 91.9 90. 11 90. 11 1102.8 180.22

10 88.4 88.38 88.38 1060.8 176.76 97.9 97.52 97.52 1174.8 195.04

11 3 .6 3.55 7. 10 43.2 7. 10 41.9 40. 11 80.22 502.8 80.22

12 38.4 38.38 76.76 460.8 76.76 47.9 47. 52 95.04 574.8 95.04

13 108. 1 98.21 98.21 324.3 196.42 110.6 98.76 98.76 331.8 197.52

14 102.0 99.55 99.55 306.0 199. 10 102.7 99.69 99.69 308. 1 199.38

15 58. 1 48.21 96.42 174.3 96.42 60.6 48.76 97.52 181.8 97.52

16 52.0 49.55 99.10 156.0 99. 10 52.7 40. 9 99.38 158. 1 99.38

15



^

X = . 0853
^bSS5 ^-C^Zc =1G1S

•

^C slzil sC^)4oc ^*< *\c*(s0 ^-C sczo ^>fe cc^c HCste^
1 114.6 99.35 99.35 1375.2 894. 15 119. 1 99.71 99.71 1429.2 897.39

2 103.6 99.83 99.83 1243.2 898.47 104.7 99.92 99.92 1256.4 899.28

3 64.6 49.35 98.70 775.2 444. 15 69. 1 49.71 99.42 829.2 447.39

4 53.6 49.83 99.66 643.2 448.47 54.7 49.92 99.84 656.4 449.28

5 122.9 99.87 99.87 368.7 898.83 126.4 99.94 99.94 379.2 899.46

6 105.7 99.96 99.96 317. 1 899.64 106.6 99.98 99.98 319.8 899.82

7 72.9 49.87 99.74 218.7 448.83 76.4 49.94 99.88 229.2 449.46

8 55.7 49.96 99.92 167. 1 449.64 56.6 49.98 99.96 169.8 449.82

9 100.0 95.21 95.21 1200.0 190.42 108.0 98.21 98.21 1296.0 196.42

10 100.0 98.80 98.80 1200.0 197.60 102.0 99.55 99.55 1224.0 199. 10

11 50.0 45.21 90.42 600.0 90.42 58.0 48.21 96.42 696.0 96.42

12 50.0 48.80 97.60 600.0 97.60 52.0 49.55 99. 10 624.0 99. 10

13 113.8 99.25 99.25 341.4 198.50 118.4 99.67 99.67 355.2 199.34

14 103.4 99.81 99.81 310.2 199.62 104.6 99.91 99.91 313.8 199.82

15 63.8 49.25 98.50 191.4 98.50 68.4 49.67 99.34 205.2 99.34

16 53.4 49.81 99.62 160.2 99.62 54.6 49.91 99.82 163.8 99.82
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for various total cube requirements to be due to variability of demand

(<rV

Figure 3 supports the argument that when a large total cube

is available, items with high values of <3~ will be stocked in larger

amounts than items with small <3~ . However, when the total cube

available becomes more restricted, the stock of items with high

variability of demand is reduced rapidly. Plots for other items which

differ only in their value of O" show a similiar trend.

Reference to Figure 4 indicates that as total available cube in-

creases , the total essentiality of the load list increases also, but at

a decreasing rate. Planners who wish to increase the spare parts

capacity of a tender would have to weigh the cost of increasing

capacity against the value of the added cargo. Use of a computerized

version of the model with a large number of items would provide a

new optimal load list for the proposed increased capacity. Reference

to a curve similiar to that shown in Figure 4 would be an aid to the

planner who must determine whether the essentiality of the added

inventory is worth the cost of increasing tender spare parts capacity.

17



S-l

O i^

<u

Jh .O

,£3 B

s zd
2 X)

z °°
« S 4-> 00
00 ^H CO O
d '-h • -r* 00

« xi > % .1

o ..< ri «J U
o 53

u

U
0)

u
a

0)
<L>

& i—

i

o

o »-»

a

uo -rt

^ ,2.

ro

CJL

U
id

X!

u

o.

18

o
00

in



o

m
o
u J-i

V 0)
Xi XI

a a
s d
Z TJ 2
„> «
<U ,-1 o
oo "J •iH r-H

S? w VS.

rist 934

5 ^ 0)

o g

tS
"

(D (J

^ (1) rt

e p x
<U U
o

0) a

& 0)

1—

1

o
00

o

o Hi

u
0)

a

Z

m H-i £

O

o
id

X!

U

GO
•iH

o
CO

o

19

4 I



o

(H

u
<D ^
J* <D

g g

Z
CD «-i

60 ;
H O m

S 42
en o>.

en .h
°^

> 12 > u

< is

g

CD

d
£

O U
U
CD B
(X «

+->
•—

i

o
00

o

o

o
If)

&

u
CD

1
3
Z

en ^
CD (M

O Ofi

o
CO

o
CM

4 in o
20

o
00

in



oo

u u
CO

,0 ^5

S g

£ <u
1—*

3

Sffc
•H "
+* o

M to •
• 1-4

u
> a > <D II

< nj 4->

^ S 0^
u

Q> h
* Q rt

c r. £
CO <+H U
u

6
Ok

0)

H

o
00

o

o

o
If)

4)

e

I
y *-»H Tj

m
CD OJU
•*-> -iH

Si h
CO

M

o
CO

o
CO

o
CM

IT) O If)

(30

315

21

o
oo

If)



'£{.

IOC— TTEt*\ lo

75W

<5-*

sAro siw 1 ±

ccxl 'loo
Hv.-Z

WOO 9500

TOTAL CUBE

JL h1050010000

2c

101

Fig 3: Effect of Variability of Demand

7500 9500 10000

Total Cube

22

10500



>s
•*-»

• r-l

i—

1

a
•lH
-t->

c
V
CO

CO

w <D

X)
3

>> a (ju >

i-i

i—

i

i—

i

+j

2
O
H

i—i

rtM

H

o
o
o

oom
o

o
ooo

oo
in

oo
o

0)

o
H

oo
in
oo

o
o
o
CO

©

4r 4o oo o
vO m
v£> NO

o o
"* CO
>o sO

o
o
sD

23



6. POLARIS Tender Re- supply (General)

The maximum deterrent value of the FBM weapon system can

be realized only if the maximum number of SSB(N)'s are maintained

in the designated areas. The logistic support concept is based on

satisfying this requirement. Lack of essential spare parts can be

interpreted as a deficiency in the number of ready missiles scheduled

to be on station.

A load list is developed to allow the tender to provide effective

support for a given period of time in the event re- supply is cut off

for any reason. As a result, replenishment of the tender is in-

fluenced by the following factors:

(1) maintain stock levels at or near the optimum load list

point , and

(2) provide delivery of nonstandard demands (items not

included on the load list for one reason or another)

from the stock point to the tender.

The factors considered in selecting the mode of transportation

(air or surface) for an item include the transit time available ,

priority, physical characteristics of the material, capability and

availability of the various carriers, security and cost. Of these

factors those necessary to effect delivery to meet program require-

ments should govern and considerations of cost and equitable traffic

distribution should be regarded as secondary.
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In order to illustrate the considerations mentioned above con-

sider the case where a tender is assigned to support X SSB(N)'s.

The load list for the tender is designed to provide Y days support

during which time each SSB(N) is alongside for 2 days. (Fig 5).

Y can be interpreted as one cycle during which an SSB(N) has an

upkeep period of 2 days and a patrol of W days (Y = 2+W). If the

assumption is made that the alongside availability period for each

SSB(N) is the same, then ft *^* sK is the number of SSB(N)'s at

the tender at any time. Under this assumption an SSB(N) departs

and a new one arrives every -J^- days. When demand by each

SSB(N) is assumed to be uniform, stock levels aboard the tender

are depleted ^-% every JL days. Theoretically, for the case

where there is no re- supply, the tender is completely depleted of

spare parts at the end of Y days.

Tender Support Cycle

Fig. 5
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7. Routine Re- supply

Consider the first factor influencing re- supply mentioned

previously. The average percentage of the optimum amount (zLl )

which the tender maintains will be defined as the effective inventory

level. This level is a function of demand, re-order policy, and the

lead time associated with the transportation of the item. Consider

the case where demand for all items is uniform over a ninety-day

period. Fig (6) is a plot of effective inventory levels at the tender

versus lead time required for delivery as a function of re-order policy,

The graph can be utilized in several different ways. If a re-

order policy is chosen the graph indicates the inventory level that

can be maintained for various items as a function of lead time. If

lead times are fixed and a certain inventory level is desired to be

maintained then the re-order policy can be obtained from the graph.

It should be noted that due to the capacity of the ship and the

lead time required for delivery of an item the tender will never

average an amount equal to the load list quantity for that item.

Several examples will serve to illustrate the use of Fig (6).

(a) Consider the case where an effective inventory level

of 90 per cent is desired for an item. The graph

indicates that this level can be maintained by re-

ordering when the stock level drops to 90% provided

the lead time is 10 days. Another possibility is to
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re-order when stock levels drop to 95% if lead time

is 16 days. The re-order quantity in each case is the

demand to date plus expected demand over the lead

time,

(b) If the lead time for delivery of an item is fixed then

the re-order policy determines the effectiveness levels

maintained. With a lead time of 12 days a 60% policy

results in an effective level of 76%, an 80% policy

results in a level of 84.5%, a 90% policy in an 89%

level and a 95% re-order policy in a level of 93%.

If the lead time is 30 days, which is analogous to that of surface

re- supply by AK then the maximum possible effectiveness level is

83% for the example shown.

It is obvious that high inventory levels can be maintained

effectively only for the case when the lead times are short. This

illustrates the requirement for air transportation of spare parts as

opposed to surface re-supply.

In addition to the effect on effective inventory levels maintained,

air re- supply has the advantage of reducing the confusion factor at

the tender when supplies are received. Rather than being saturated

with parts delivered by an AK all at one time the tender is able to

maintain better control over spare parts storage. This in turn tends

to reduce "loss" of items due to misplacement.
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Re-order Policies

(%) SX9A9T SS9U9ApD8JJ3

Fig. 6
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8. Determination of resupply method for NIS/Nonstandard items.

Consider a spare part that is required by an SSB(N) and that is

not in stock (NIS) on the tender. If it is assumed that a spare part

NIS on the tender is always available at the stock point then the

mode of re- supply transportation (air or surface) can be determined

by using a criterion developed as follows:

Let, DAV<; = Julian date of departure of AK from stock point.

\/\K = Days AK spends in transit to tender .

5j = Days remaining until j— SSB(N) starts patrol,

fR; = Julian day that v— SSB(N) generates demand
for an NIS spare part.

C/ = Days required for loading , unloading and
installation of spare part

.

^—•* = Days required by spare part to travel by air

from stock point to tender (MATS, commercial,
etc^.

If R^-*-Sj >, Dak-V-""^vc-*-C , re- supply the spare part by AK;

If R^-^Sj < Oa^VT^+C. , re- supply the spare part by air,

subject to the constraint ~^\S
"*" ^^ — ^— ^ •

If R -*- S; < VJT" , then it is impossible to re- supply the spare

part prior to the SSB(N)'s scheduled departure.
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9. Conclusions

1. The number of stockouts will be reduced if stocks are

maintained in accordance with the model. The model maximizes

the average number of demands filled over some length of time.

This is equivalent to minimizing the number of stockouts over the

same length of time.

2. As the spare parts stowage capacity of the tender is in-

creased, the total worth (military essentiality) of the inventory is

increased, but at a decreasing rate. For example, if a small

tender and a large tender each have their cubic capacity increased

by the same constant amount, the small tender has a larger per-

centage gain in the military essentiality of cargo than the large

tender.

3. Items with high essentiality to cube ratios are generally

carried at high stock levels. For those items with nearly the same

pattern of demand (-^-). the model maintains high inventories of

high essentiality, low cube items, and low inventories at low

essentiality, high cube items.

4. When items must be deleted from inventory because of

space limitations, those with the lowest essentiality to cube ratio

are the first to be eliminated.

5. The spare parts stowage capacity of the tender is the

limiting factor in determining the length of the period over which
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demands filled should be maximized. The load list should be designed

to maximize demands filled over a given length of time.

6. Re -supply by air is required to maintain high inventory

levels of essential spare parts aboard the tender. In order to main-

tain essential spare parts inventories close to the optimum load list

level at all times, it is necessary to have short re-supply lead times,

or a large tender capacity. Since tender capacity is limited, high

inventories can only be achieved by utilizing the short lead times

associated with air re-supply.

7. Re- supply ships cannot meet demands for non-standard

items. The long lead time associated with ship re- supply precludes

the possibility of meeting demands for non-standard items as they

occur. For example, it is a rare occurrence when a submarine can

execute an order for a non-standard item and have it delivered by

ship re -supply before going on patrol again.

8. The iterative nature of the model and the large number

of items in a real life inventory make the use of a computer mandator y
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APPENDIX I

Derivation of Optimal Tender Load List Model

(i) ^cxji - r x-w fcu^ dLx-s.

.

O

(2) V^C-z^ - J (^--^^Cx^cLx^
.

(3) 5 LC^-0 - ^x-^Cx^x^ *t£[ J-U^dLXC.

(4) ELLxa - 5;l*-0 + be Cz.0 .

Essentiality of a spare part is an important factor in deciding

on a load list which will maximize the average number of demands

filled by the tender. On the basis of past usage data the model

should indicate the quantity of each item to be stocked such that the

total essentiality function Mis a maximum subject to the tender

stowage limitations.

The function cv( X
C. j'Z.L ) will be introduced to represent a

utility valve associated with the ability of the tender to meet demand

for an item. rM . , . _, „ .

§lU^ 2^ \^C^C ^W x, >-z..

L = \ , "i M
It should be apparent that if demand is less than what is

stocked the tender is able to provide 100% service. On the other

hand if demand exceeds the stock level then the tender does as best

as it can by providing an amount "Z.(, #
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In accordance with the measure of effectiveness mentioned

previously the objective is to maximize the total utility value as

defined above

Max. N'\(l„Z
a> ....ltlV ^^^7 &J.<Xv»1C>3

subject to the constraint

where jv.X X a X^ is the joint probability function of

By assumption (7) this joint probablity density function can be

written as:

JCx^ x^ ^ Ru^^Cx,^ f^Cx^

^By definition $ flCX^^X;. m i- 3
As a result t_\jz.^ Cx ^ , ^-O J can De expressed as follows:

Let M;saz^-eL^u v^-M

• \ M:s;Cx^-5%wU;a^fwUc^xc

Maximize M(z„Za ... "2^ - ^- H*v SsX*.^

Subject to: 5L cc_zc ~ C
The problem presented is one of maximizing a function of *v

variables where the variables are related by a single constraint

equation. The problem could possibly be solved by eliminating some

of the variables using the constraint equation. Eventually the problem
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could probably be reduced to an ordinary maximization problem.

This procedure is not always feasible and therefore the technique

of Lagrangian multipliers will be utilized.

To find the points of M= Hll,,^ .7^) where the

variables "Z^Z^ "Z.^ are related by the equation ^-C v-z.c — C= O

the function L is defined as follows:

where A is a Lagrangian multiplier

As a result^the following set of(n + Inequations in(n + 1}

variables ZL
y
>Z X • •

.

"Zm and A is obtained.

dZ-
v

vT-X

^ - Af^U^-cV
-tsl

By rearranging the terms the above equations can be put in the

form

dz;
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Recalling equation (3)

Lebnitz's rule is utilized to evaluate the left hand side of this

equation since the units of integration depend on the parameter "Z.I .

Leibnitz's AC. . \r- -i > <, v * _ -,

Rule : akj ^x
J
-^ddc=Vv.C\aCv\Ob(¥)- WC<xCe,<ioJ(^

aw \^

Since jy £U^ck.x; « 1. « £ £.00 &* 1 +" Szl £'S*^&*^

Then J~ JlUOAXi. = 1- £" &0OAx«

By substituting and rearranging terms equation (6
1

) reduces

to the following:

£" StbQVSjft. = 1- X («*./) (5)

Equation (5), subject to the constraint equation, provides the

method where-by the set Z can be determined. The two equations

determine a unique set of ~Z.{. S provided that for all L. J\.^0">0

for all values of KO, .

The distribution function ,

^~~(*
) , of a numerical valued

random phenomenon is defined as having as its value, at any real
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number "2-
,
the probability that an observed value of the random

phenomenon will be less than or equal to the number "2L .

(Fit) * PCz. < tTX) • Since the left side of (5) is a distribution function

the following condition applies:

-X O X Z. 3 4^ S

In order to solve for "Z; in equation (5) we must assume a

value for A .It would materially decrease the iterative require-

ments if the possible values of A could be confined to a portion

of the real line.

Since O ^ j*^ ScCjOAxL Si
Then O £: JL - A ( feA

.-. Qg.) > A > o
These limits apply for all v_ and therefore \ must fall in

the range .
Vwxx^llV A >. A^ O in order for all items to be

included in the load list.
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• APPENDIX II

Derivation of S^Cz;^ for the case where demand follows the normal

distribution:

where £ Lx^ - "Ji p " J" f. *^ Z.**"1 \*~

.*. £" £UOAj<c- 1 - S*
1

fc.0OAx;

but $*- Rotf&xc - 1 - XC-f^

In order to solve for S^C"ZL^ an explicit expression must be

found for J| *L JC^t toLXJ. . The procedure is as follows:

_u x*i
(II

By taking the derivative of -rr;— S- ** the7 6 \7CTT

following expression is obtained: ^

—
:
— a.*""— *^ r - " *

Integrating both sides, of the equation between the limits of O

and "2.1
: , _ v
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Rearranging terms: , . .
:

Note that the expression on the left is the same as equation

II- 1 except for a factor OT^ . In order to obtain the same ex-

pression multiply both sides by OT^ which results in

but — \ -2L -p= e. = - 7=^- e.
o

<3-. - ^X-^ST" ' <J~c -X^l

Observe that , / x v-WvV~

5 ^j.cxjckx. * t\-x^ji
- ( *cw -y

Combining the above derived relationships an explicit equation for

*5 w L'Z,^ results:

for ^. c >0
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APPENDIX III

A computer program based on the flow diagram illustrated in

Figure 7 was written in the Neliac language and compiled on the

United States Naval Postgraduate School CDC 1604 digital computer.

The Neliac statements are found in this appendix following Figure 7.

Outputs for several choices of parameter values confirmed the re-

sults shown inS ection 5.

As indicated by the computer flow diagram in Figure 7 the

first step in the operation of the program is to carry out the routine

input procedures.

The next step is the computation of the value of lambda equal

to the smallest fraction, v c r / . Denote this minimum ratio as

min (^ -rr ) . This value of lambda is used to compute all values

of AREA = ( i_~ X -j^r ) for i = 1, . . .N. Each "Z-i is computed

from: -^ _ ^ eT-f ( 3^ ) - A^^A
'VJlrJu

which provides an approximation of the normal distribution function.

In the expression above: S-Y~3" v -^=£ )
- -i- " "08

where ~P = \ -^ 0.\4U^2.l(^) A- O.OSg^Oil(^

^Details of the Neliac language may be obtained from Prof.

R. M. Thatcher, Operations Research Department, U.S. Naval

Postgraduate School, Monterey, California.
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The product Cc"Z_C. is computed, stored and summed. The result,

^£_ c.L"Z.C is stored in the cell named SUMCZ.

This sum, ^-C^ZC , is then compared with the contents of

Big C , the specified total cube available for the storage of spare

parts. If SUMCZ > Big C, then the cube of the load list, for the

given lambda, is greater than the capacity allowed for storage. When

this occurs the item with the lowest essentiality to cube ra,tio is dis-

carded, a new A = min^c,! ) i s computed from the remaining items

and is used to determine a new SUMCZ. This new value of SUMCZ

is compared with Big C. If SUMCZ remains larger than Big C the

item with the lowest essentiality to cube ratio is discarded. This

procedure is repeated until SUMCZ becomes equal to or less than

the cube available, Big C. When a new load list is found that meets

the cube constraint then the essentiality of the load list is computed

and a print -out is obtained for Z^sUc^A, S.C^2c, and ^-^i-SCj.^,

A table of the items discarded is also provided.

If the cube of the load list computed for the initial value of

lambda ( X~ vv\jlv\_ -P ?* ) is less than the capacity allowed for

storage, then a print-out is obtained for "Z,:, SCt'jV \^^-dC-^ and ^-HCsCzj.

In order to find the load list that most nearly meets the cube constraint

it is necessary to evaluate ^LCVZC for several assumed values

of X .
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The number of values of A to be assumed is specified in the

program by the parameter K. If, for example, K-20 then the

variables "Zu> Sfei ) > 2lC^1v and 2LM;.s(z.L^ will be evaluated for

twenty equally spaced values of A between min ^r and zero.

In this case twenty print-outs will be provided. The optimum load list

is taken as the load list that most nearly satisfies the cube constraint.
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START"

PRINT
PARAMETERS

0—
J

Wng

SETFLAG

1
'

H-l—^M

> r

T»SCAftO~TOe>\_E

©
1.c6-A:EL

—»• AREA

J-\r40T

Cokpote "2L V :

*T *^L'

conPcmE

*- SOt*\C"2.

i <|«£> *^HQ\

> CCWWVJ^. S(^

-V- SOVWVS^

MO

/

/moV ©
Fig 1 Computer Flow Diagram
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-

Neliac Statements for Computer Program

B\gC = o^h-h * o
\n\N = vt,

HXCi^ =: VOO»0 * O loO.O * o
S"0.0 X o

,
s~o. o * o

\00-0 *

O

voo.o * O
^o.o * o, iaO- O *- O
\oo.o *0,
50-0 JtO

,

voo.o * O
so. O * O

\oo • O * O
,

loo.o*o
ro,o *o

,
OD5Q.O *-0

Svqm/\(iC\ = v?_.o * o . *.o * o
\7_.0 * O ^

3.0 *- o
j

ix.o * O
, ^.o * o,

V7.. O K O ,
B.O JfcOj

\<L.O fc-O
,

VT..O *0,
V2.. O * O

3
3.0 fcO,

VZ-.O *0 ,
CX303.0 *-0.

VOCU^ -

CVO * o , so x o
^

^\.o *o , So * o.
7L.O * O , -X.O * 0>
z.o *o, -2_.o *o,
Z.O *0, 7_.0 *-0~

OUfc^ - ViL.O * O , V7L.O *0
j

V3L..O * O .,
WO * O,

3-0 * O
5

3.0 * O .

3.0 X O ^ 5.0 * 0^
V*_.0 * O . VX-O i<Oj
VX.O * O «> VZ..O *0-

3.0 *o,3.0 * o ,,

3.0 *0
5 oco^.0*0.

XI - 000

,

i-fi\*A^t\ = GQOO.ocoO -KO
So^AC."^ = Oooooo . 0000 *
SOt^\VvJS^_ - Cococo.^oco *

"2. ( Vfc^ = 000000 - 0000 * O
,

S^Cvu^) - oooooo - oooo * O,,

/\ Indicates a blank card

^/ Indicates a card of all nines

O
O
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A

A

A

VJOC - 0*0, ^REAn5" = Ooo.Oooo^O,

K ~ O^O^ Y- O *O , "T~ = 000. 0000 * O
,

expx - o * o
exp tl - o * o,
SQKT^px b O'*0

~T^_ = <0 * O
}

T~l_ -0*0,

; START- i , £<> ; }

PRl^T PARl\v\

O—*- KiQ - -» FUSS —*- 3YXAGv, —*- WFUtQ —»• V^
^

sq«orv= C^v^r^-n -

3
Sc^«rr2_T-X "\

,

f"vk^o h^ v^<t>c :

O —*> M
,

iREPteAT-

:

"X3F rr^H, \v\^ Oa1\ - ^^u_ *. H+i-»v\
r
v\= *^ :

F\mvs*s . t^spotc-. y^

A
if nv^^-A^ - o : \-At^vsD/\ —* nm

,

CatAPoms. Ac^/h •

o—"> s^vNca
,

F<£r X" = OCi^ ^v^- 1.

{_ IF T2rseA ^Cxl - ^Ou^. : <t>^A.^-T-.
•

1L.O — ^^QDA * ^CCXT, /nmC3Q^ —* AfteACQ
TJF /\R€LA 'C^Ti •= O •. O- 3-BT —> -T- cu£>*<rr. ;

"35= Aft^A LXT, < o.S : 0.5 -A»eA tX^ -H> Au^\ cr

o - t -*» "T. c0vrr.

APoe^Av^ <. o. ocool \ O —*» "V, cowrr; ;NORMEX <« AR^AM5 ; "T > }

O^bv^T- '.

X. -^ i. -—*- XX
,

5
£ « -X1K \ " \ "* XX < ^ VJlK^ua \ - \

> L_A^av:A.7\ <. O AQeAv \ - \ > A«e.A CX^ <
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A

A

A

A

A

A

A

A

A

A

A

U AReiAW\5 \

= \ > ar<e>m^\5 U <~r \ - \ >T" > 1

KX Cxi -v- SVC^tAA Cx\^ * ~*~ —» "2. CX^\

<2>w\rr *. ^ ,

XF" XFv_A<^ - O '- "TS.ST". C^iMPuTS ^>^ .

1 —» PIAQ
,

vo -v x. —•* M ,

^\MO MXm \Mcf>C_.

O—*- XX
,

I ^<. \ X VJO ^2: OO ' 5 C^ » , } ,

<£k* • f-<£r. x * ocx) mm -i Itf \T^n mr^x} = viuu.-. Sk\p,
;

<5\C5M/\CX"} /SQ'RT-i^X —*• S\<a4>Z_?X
,

^X,ex3 / 5\<aHA CXI —»- K * X —•* X ,

UHSFT-S * X —+> K , EX9F (X •, EXP1),

C-E.CX1— vvxCx1/s\G*AALxa—*• Y*Y —*V,

MXCXl * ^CALXl -V^CXi * Cl.O-AttyEACx"3
>

)

-V SVG,£2_PX * HXPX — SVC^OZ-PX: * EXP2.-*ST: ,

X^\SCA*VO ~TAT3V_& *.

, c < > ,,,,},
- £ <-<- TVEM V DVSOVC3.0 \ TA^VJk=. ">*?

> ? J

, Z_ ^ im x o \\\ v*j

uu c. o \\\ ^a ^ svgvaa

FtjM^ X = OCl^MGi-X.
^ 3TGlt-A "OvscAttXi ^X~^ m 3",

XTV=>A Dv5CAaXi CXI "V X.—» XJ^M T>\;SC*\QXi CX"^ ,

C- C^^ V\\ VVX ^3-3 ^\ 3vGt^A ^-^"3 > ^ , ^^
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A
3

A

A
9

5T

TX* OO

F&R 3~" - OCD NiK^- 3l_

5
A \^ O *0 .,

Tb\ ^ O * O
M V oia = 0*0, "O V «^to<£K - O * O

,

^.\ rf^ -j

"DF O > AuaeA O Arjsa > Ci.S »- eJi^Q. . •

$ O —*""*""'>

C\c£^p^rciSL ; ~*~/ *«x-*- —*- A ,
N=-«.^t£&F (A-, q^jf^

G%S* * \^RF* — AR.SA *- KiUN\
A * A -*" A, O— A —*- A

,EXPF (A-, A)
^

R^cj^-rzJPx: * A —*-"oe.*si£v\
5

"XF -V <- O •. O — T" —>~T~ •
J

D£CTAT\< /IS *~^
y0-O'0coo5 -<- "^ <C O.occ^S" *.

£rt= \ Av-v^a \ \»si
\

N^xoa^-X \ Fvj*a£rv|>vi >">
"J j

A

A

9

5";

T>*p—**v, "p * "P —*- "P^

p^p —» p.
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